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close to the diffracted wave front are clearly qualitatively different. 
In Fig.5 we show curves of the pressure distribution on a sphere with a softer damping 

coating (y = 5) for different instants t. The pressure rise at the point 'p = n, due to 
interaction of waves travelling round the sphere, can prove to be substantial and in some 
cases is more than twice the incident-wave amplitude. 
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STATIONARY VIBRATIONS OF AN ELASTIC HALF-SPACE WITH A 
CIRCULAR CYLINDRICAL CAVITY SUBJECTED TO A PERIODIC LOAD* 

L.A. ALEKSEYEVA 

The problem of the stationary vibrations of an elastic half-space with a 
circular cylindrical cavity subjected to a periodic load along the axis 
is considered to investigate the state of stress and strain of extended 
shallow mining shafts under dynamic effects. The problem is reduced to 
the solution of a system of equations with normal-type determinant by the 
method. of superposition of solutions by using contour integrals of 
Fourier type and Fourier-Bessel series. The question of the existence 
and uniqueness of the solution is examined, and its singularities are 
investigated as a function of the velocity of the moving load or its 
period. It is shown that Rayleigh surface waves occur in the medium for 
velocities above the Rayleigh value. 

1. Formulation of the problem. Let us consider an isotropic elastic half-space 
s<h,h>O with Lam& parameters I,p,p, weakened by a circular cylindrical cavity of radius 
R, R <h (Fig.11, whose axis 02 is parallel to the half-space boundary. We connect a 
cylindrical coordinate system (0, r, 8, 2) to the cylinder axis, whose polar axis coincides 
with the OX axis. A load that is stationary in t and periodic in s acts on the cylinder 
cavity 

u,J = +&JpJ (6) ei(gr-“r) 
(f.1) 

j = r, 8, 2; Er = 1, Eg = e, = i 

*Prikl.Matem.Mekhan.,51,5,836-844,1987 
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allowing of the Fourier series expansion 

(1.2) 

A load allowing of a Fourier transformation in y 

u,, = pcjfj (y) ei(+ot), j = 5, y, .z 

sx=1,.5y=e,=i, fi (Y) = r fj* (7)) eim drl 
-ca 

(1.3) 

can also act on the half-space boundary. 
Determine the state of stress and strain of the medium. 
To solve the problem we use the Lame potentials cb,,p 

u = grad CD + rot'Y: (1.4) 
where u is the displacement vector. The boundary conditions (1.1) and (1.3) and steady in 
nature, consequently, the potentials a,, Yl have the same dependence on time. We henceforth 
omit the factor &at. 

We represent Y in the cylindrical coordinate system in the form /l/ 

y = %e. + rot (G4 

The functions @r%r 4% satisfy the Helmholtz equations /l, 2/ 

(1.5) 

Fig.1 

(cp, c, are the velocities of propagation of the volume and shear waves). 
Using Hooke's law for an isotropic medium 

U,,=h 
> 

and relationships (1.4) and (1.51, we write the boundary conditions for cpj 

(2&B'+ 2 -gcp,+ 2i-$-2$$-=f* 

2 & (a - Ed + ($i - $) iv,= if, 

2iE 3 - E ~--t(2~~-~~)~=if, for s=F. 

(f' - 'f*fJ" + 4) 'PO - i&cpr + E 0' - 5' + DJ 'Pi = pr 

-D,cp,+I(~(B’--E3+D,)+~,(~,=ipe 

iEG-x- ’ a% + i(-&Sa-v)%=ip, for r=R 

D~=+(+++Q$), Da=f$(f-$) 

(1.6) 

(1.7) 

(1.8) 

(1.9) 
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We represent rpj in the form of the superposition of waves emitted by the cavity and the 
half-space boundaries 

cp~ = 
?l=--n; L 

A (q) = aJ (q) exp (Q/q + (I - h)d$ - vJ% Yj = l/a,* - E’ 

(1.10) 

Zn(vf, F) = in (Vj/2)‘nlH~(1) (YJF)/ I( n 1 - 1 I!, vj # 0 
Z, (0, F) = ln r; z, (0, F) = (Sgn n)nF-l"l, n # 0 

As is well-known /l-3/, the components of the Fourier-Bessel series in (1.10) are 
particular solutions of the Helmholtz Eq.(1.6); the Hankel functions H,,(l) (VJF) satisfy the 
Sommerfeld radiation conditions as F--, 00 if 

The damping conditions 
Im vJ > 0, vJF 10, -03) (1.11) 

should be satisfied for the waves emitted by the half-space boundaries. 
These conditions impose a constraint on the selection of the contour of integration L 

and its possible transformationsinthe plane of complex 9: tl = Y1 + inc. To obtain a formal 
solution of the problem, we assume provisionally that L coincides with the real axis ~b. To 
give the solution a foundation it is later required that L be transformed because of a number 
of singularities in the behaviour of the integrands on the real axis Q. 

We also note that for E = aJ one or two of the Eqs.(1.6) become Laplace equations. The 
class of solutions whose first and second derivatives decrease at infinity is described by 
the functions Z, (0, F) eine. The factor for H,,(r)(vJr) is selected for convenience since it 
can be shown by starting from the asymptotic form of the Hankel function that /4/ 

lim Z,(v,r)=Zn(O, F), lim(Z,(v, F)- In v)=ZO(O, F) (1.13) 
y-0 y-0 

This continuity property permits a number of convenient identical formulas to be obtained 
for the functions introduced, and is also necessary for investigation of the behaviour of the 
solution as 54 aJ. 

Therefore, the relationships (1.10) satisfy Eqs.(l.G) (under the assumption that the 
operation of term-by-term differentiation of the series and functions under the integral sign 
is valid). The unknown coefficients aJn and the functions aj(n) are to be determined. 

2. A source periodic in x concentrated on the axis. We assume that ajn are 
known. This is true if a source concentrated on the s axis, those potential can be given by 
an analogous Fourier-Bessel series, is considered in place of the cavity. To determine aJ($ 

we go over to a Cartesian coordinate system in relationships (1.10). We use an expansion 
valid for z> 0 

m 

Z, (v, F) eine = s f ($ q erP(@l-- 1/m) dn n 
-a 1/'1' 

with the same relationships in the signs of the radicals where 

For n = 0,~ = 0 we will use the formula 

(2.1) 

(2.2) 

We set f,,(q, 0) = --'i2. Because of an analogous formula for H,,(vr)einH in /5/ formulas 
(2.1) and (2.3) can be obtained for Y = 0 by a passage to the limit in (1.13). For Y = 0, 
(2.1) can be obtained differently by using formula 3.384(4) in /6/. 
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Substituting these relationships into (l.lO), we obtain a representation of the potentials 
in the neighbourhood of the plane boundary O<x,<h in the Cartesian coordinate system. 
Later the boundary conditions (1.8) should be used, the terms in eim should be grouped, and 
by virtue of the arbitrariness of y the coefficients of eiuQ on the left- and right-hand 
sides should be equated. We consequently obtain a system of linear equations in a; and al(v) 
which we solve and then obtain 

A, 01) 
A- (11) 

k=O 
- m 

exp (- h j/-q*- Y,“) 
Akfri)-;= - 

9* JP - BP 
aknf* fill Yk) 

r&P;_-m 

(24 

(2.5) 

-- 
A-+ = 4pal/p2 - asI/@ - j3"* (2Pa - fi")" 

Aoo = vlaA+Jfpa - @zjl/p" - a2 

A,' = 4v,29fp2 - ~'@p'- fi") 

Aoa = 4v12g (p2 - fl")(fl" - 2~9, Aa0 = Zg'vi"Ao' 

At = v:(2pa - fl")" + 4v/p* - aefp* - p'($(j3* f El)- E*vt) 

A,% = -8&@ (p2 - fiz)I/pa - aB, AS0 = -v~-~A,,~ 

A$ = @-gAIB, A,= = AI1 - 2v1S(2pS - @*), pa = 82 + q* 

The components of the loads acting on the plane boundary are 

A0 = (pa- 2Psff,* + 2dP' - B'(tir* + @sf,*) 

vISAI = p" [(2p* - fJa)fsr* - 2q j'-p" - a%*1 f 

25 (2PZ - pa - 2mI/pa - B") (tlf,* _Ef";f,*) 

vr24= i/p" -B"[(~P" --pa) fz* + 2E VPa- aafis*l f 

It follows from relationships (2.4) that the integrands have singularities in 'rll which 
depend on 5. These singularities and the selection of the contour & will be examined in 
sect.4. We now assume that the contour L is such that it agrees almost everywhere except in 
a set of small measure with the axis VU the radiation conditions (1.12) are satisfied on L, 
and the integrands are continuous and twice differentiable with respect to sand y. 

3. Diffraction by a hollow cylinder. Resolving system of equations. Let us 
consider the case v,#O,j =0,1,2. To determine Ujm we use the boundary conditions (1.9). 
For this we go over to a cylindrical coordinate system in (1.10). It is known /l, 3/ that 

&kroost = ,j_ i*J, (kr) e”t 

Relationships (3.1) hold even for complex 6 for which it follows that 

(3.if 

Here 

Substituting (3.2) into (1.101 we obtain 

a 

(3.2) 

(3.3) 

(3.4) 
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Using (3.3) in the boundary conditions (1.9), grouping terms with eine and equating 
Fourier coefficients on the left- and right-hand sides of the equations,weobtain an infinite 
system of linear algebraic equations to determine a," 

j$o B,j (2,) a,” = - i; B,j (Z,,o) i i a,‘“C$, - 
j=o WI=--oo k0 

(3.5) 

i Bkj @no) c,” + pkn* k=O,l,Z, n=O,&l,$-z... 
j=O 

The notation in terms of &j(&) iS here 

Boo = (I/P (vosRa - %*Re) - n”) 2, (v,, R) + v,RZ,, (vo, R) 

Bo’ = n WK’ (v,, R) - Z,, (vo, R)) 
Bee = v,%R=Z,,' (vo, A) 
B,O = n (2, (vl, R) - vlRZ,,’ (v,R)) 

B,’ = (VSvl'Ra - nP) Z,, (vu RI + v,RZ,’ (v,, R) 
B,P = -n%RZ,, (vlr R) 
Bze = %R ((vlaRa - n”) 2, (vl, R) + vlRZ,,’ (vl, R)) 

4’ = n%R (2, h R) - v&G hr El)) 
B,' = 'l,v,R (v,'R= - EaRa) Z,,' (v Ir R) 
J,’ (v, R) = dJ (%)/da lzey~ 

as for H,‘; we obtain Bkj (Z,,O) by replacing Z, by Z,O. 
The formal solution of the problem is completed by solving system (3.5). Thedisplacements 

and stresses at any point of the medium can be found from the known potentials (1.10) by means 
of (1.4) and (1.7). 

4. On the selection of the contour of integration L. Utilization of the formal 
Fourier transformation in y on the boundary z = h to solve this problem results in a number 
of difficulties in principle since the integrands on the real axis, as follows from (2.5), 
have singularities of the first and even second order pole type, as well as branch points 
whose location depends on %. Therefore, the conditions for the existence of an inverse Fourier 
transform are not satisfied, and the operation, say, of differentiation under the integral 
sign is therefore not allowable. However, transformation of the contour L in the neighbourhood 
of the singular points enables the solution to be represented in the form of contour integrals 
of Fourier type whose integrands are continuous, differentiable, and satisfy the radiation 
conditions along L (1.11). Since there are branch points'it is necessary to extract the 
domains of single-valued analytic branches and to construct the contour taking these domains 
into account. 

It follows from (2.5) that the function a,(q) have singularities for 

VI = 0, % = p (4.1) 
p = a,, '1 = &Vcz," - E", i = 1, 2 (4.2) 
A_ = 0, ?l = f,'R = *v/r" - %", y = W/CR (4.3) 

where CR is the Rayleigh wave velocity in the half-space determined from the solution of 
(4.3) which has.two real roots &v /2/ satisfying the condition a( fi (7, CR <e,< c,,. For 
periodic loads o/I% I =c is the propagation velocity along the z axis. If l%l>r i.e., 
c<cR, the integrands have no singularities in n1 and the realqlaxis can be taken as the 
contour L. 

For c = CR we have A- (0, 7) = A-.,, (0, v) = 0. A second-order pole is at the point n = 0. 
But since the functions al(q) are analytic in the neighbourhood of this point and the relation- 
ships (2.1) allow transformation of the contour in the neighbourhood of V) = 0, the contour L 
should bypass this point, say, in the e-half-plane 0< e<~ - fl. The direction of traversal 
is not essential since it does not affect the magnitude of the integral. Let us note that 
such a transformation of the contour of integration should be allowed by the real load f,(Y) 
(1.3). This latter is valid for a broad class of loads, particularly finite with finite 
support. 
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Fig.2 

For CR <c<c,(~< &<Y) the integrands at the points &vs on the n1 axis have a 
first-order pole. For this case, a sheet of the Riemann surface of the function F(q,vj)= 

l!zz%W 
Rs F>O with the slits qr = 0, fqs I> Iv) 1 from the branch points n = &tri 1v.s i 

= 0, is shownin Fig.2a. The signs in the quadrants correspond to the sign 
of ImF. In this case the value of the integrals depends on the direction of bypassing 
the singularities &VR which should be bypassed in the second and fourth quadrants where 
conditions (1.12) are satisfied /6/. 

As c-+cb i.e., for 8-, fL A (9, 5) -+ A 01, B) = 0. It follows from relationships (2.5) 
that the potentials of the shear waves 91, 92 -cc while the potential of the volume waves 
tends to a finite limit. 

As c --, c, and c--t cpt the function &f(q) contains P(T), YJ) in the denominator, 
where 

lim F(q, VI) = 1/g = I q I for q = ql 
vp 

We do not succeed in transforming the contour in the neighbourhood of n = 0 as had 
been done in the case e-+cs since by conditions (1.12) vq = n for rn> O,%T = -n for 
%<O* Consequently it is impossible to go from the right to the left half-plane with a 

continuous change in t';i" along L without going through n = 0. At the point $ = 0 the 
functions have a non-integrable singularity of the type 1/ In 1, consequently, even as c--t cp 
we obtain v0 -_* 00 the limit of (Pl,va is finite. 

If c > %t c # cp, besides the first order poles n = &vs on the axis qlr integrable 
*- 

singularities +v,= -&f@"-- ?, as well as +v, = &t'c"--- t", appear, if c> e,, which are 
branch points of the function F h, VI). In Fcg.2b where c>cI, the sheet of the Riemann 
surface of F on which ReF> 0, is fixed by the slits Q = 0, 1~ I<v, and .qr = 0. As 
before, ImF<O in the second and fourth quadrants where the singularities should indeed 
be bypassed as is shown in Fig.2b. 

For the contour selected in such a manner the integrands are continuous and differentiable 
with respect to x, y on L, the operation of multiple didferentiation under the integral 
sign is allowable by virtue of the exponential damping of the integrands as Iql-m on 
L and the presence of integrable majorants independent of z,y fSect.5). 

Note that it is not convenient to evaluate the integral (3.4) along L. By using the 
theory of residues we can represent the integral component in (1.10) in the form (for c> CR): 

exp (iy (- 1)’ vR + (x - h) r/y’ - ajz) 

The first integral describes the damped waves as 
waves that occur for c> ce. The same rule should be 

c;:, Cf" (3.41, (3.5). 

1~ I-+= the second describes Rayleigh 
used when evaluating the coefficients 

5. Onthesolvabilityofasystemofequations. Thefoundationforthe solution 
oftheperfodicproblem.. Theinfinite systemofEqs.(3.5) todeterminethecoefficients o,- 
can be reduced to a system with a determinant of normal type. Let us show this. We introduce 
the newunknowns 

bkn = i Bkj (Z,,) 0,” 
j=O 

(5.1) 



662 

We let Dk'(&,) denote a matrix inverse on BkJ(Zn). We have 

It follows from relationships (2.5) that by virtue of the selection of L the estimates 

I fn (119 9 I <I v,Q P’ i I I It I - 1 I!, I q I <v (5.3) 
Ifn(rl,v)I<l9P'/l Inl--111, Irll>V 

l AjklA- I < C, P < PO; I Ajkl.L\- I < CP, P > PO 

are valid an L. 
Here and below C and p0 are certain positive constants independent of I(, m,n. Moreover, 

fox any 6, 0<6<min(2, h -RR) there exists a c,70 such that along L 

I -&cl h) I < CaexF (-2 (h - 6) I rl I) (5.4) 

These relationships enable us to evaluate the integrals cIm* and c,%. For example. 

For sufficiently large n>N, n7M the following estimates are true 

1 Bkj (Z,') I < C I n I R"", I DI? (Z,) I < CR""' 

Consequently 

Hence 

This last series converges by virtue of the selection of 6, i.e., system (5.2) has a 
determinant of normal type. The free terms of the system are bounded since h'>R and 

j Cj"Bt;j (Zn*) 1 <C 11 1 (I TV 1 + l)(Rih')'n' 

The coefficients pP-0 as Ial-+m, by convention. Therefore, the conditions are 
satisfied for the existence and uniqueness of a bounded solution of system (5.2) that can be 
found by the method of reduction /7f. Successive approximations , which is equivalent to the 
method of successive xeflections can be used. 

The order of decrease of the coefficients bk n in n is no worse than the order of Pk" 
as Inl~oo. Consequently, the system of Eqs.(5.1) satisfies the estimate 

1 aj"Z,k (VJ, r) 1 <C (R/'r)ln' j n [-'-' 

if pk"= O([ II\-~-~),'s>O from which the uniform convergence of the Fourier-Bessel series in 
(1.10) in the domain r&R follows, as does the inequality 

1 QJ”fn (Q, VJ) 1 < c I Rq IIn’ \ n I-” I 1 n I! 

Consequently on L 

Therefore, the integrals in (1.10) converge uniformly in z, Y in thedomain r< h. 
Analogous uniform estimates can be obtained for the first and second formal derivatives of 
the series and integrals and their uniform convergence can be shown. The existence and 
uniqueness of the solution of the problem is shown thereby. 

The signs of the radicals were constructed from physical representations in the con- 
struction of the solution. Namely, the integrals in (1.10) correspond to the expansion of 
potentials in plane waves being propagated in the lower half-space and damped at infinity. 
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Since the functions =1(q) are analytic with a finite number of singularities, the contour can 
consequently be transformed by going over to equivalent contours. By using the method of 
stationary phase, it can be shown that for c<+ relationships (1.10) satisfy the Sommerfeld 
radiation conditions 

(5.5) 

For c>cR that part of the potentials described by Fourier-Bessel seriesandtheintegral 
in the principal value sense will satisfy conditions (5.5). The components outside the 
integral describe Rayleigh surface waves of constant amplitude for Z= con& independently of 
Y. 2. 

It is interesting to compare the solution obtained with an analogous solution in the case 
of plane deformation. As is shown in /6, 8/, for plane deformation the stationary load on 
a circular cavity generates Rayleigh waves in a half-plane (this is also clear from the 
solution presented above) , which corresponds to the case &=O(c= w). The Rayleigh waves 
occur in the half-space only if the period of the effective stationary load in z is greater 
than 2%/y (E < 7). 

If the problem of stationary diffraction by a cavity in a half-space is considered, say, 
for harmonic waves whose potentials are given by the formulas 

@'h-O = exp (ICL~ ((ex) - c&), x =-(z, I, 2) 

(k is a fixed subscript, and e is the unit vector of the wave propagation direction), then 
by introducing the potentials @j of the reflected waves and setting 'pi = @to+@, by virtue 
of the linearity of the problem, we will arrive at the solution elucidated above for deter- 
mining a,. Since CCj <Y (i = 0, 1, 3, ez = C0SA where A is the angle between the .Z vector and the 
OZ axis, we have 1c,[<l, consequently E= ay..E<v. This means that Rayleigh waves also 
occur in the diffraction of periodic waves by a cylindrical cavity in a half-space. 

If loads aperiodic in z are considered, this same problem occurs in the space of Fourier 
transforms in 2. It can be shown that a two-dimensional surface exists in the space of 
variables (5,q) on which conditions (1.11) and (1.12) are satisfied and integration should 
be performed over this surface. 
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